论文标题

加权添加跨度

Weighted Additive Spanners

论文作者

Ahmed, Reyan, Bodwin, Greg, Sahneh, Faryad Darabi, Kobourov, Stephen, Spence, Richard

论文摘要

图$ g $的\ emph {spanner}是一个子图$ h $,大约将最短路径距离保存在$ g $中。跨度通常用于压缩与加权输入图相对应的度量空间的计算。只要测量误差\ emph {乘法性},经典的扳手构造就可以无缝处理边缘权重。在这项工作中,我们研究了一个人是否可以类似地扩展具有纯粹\ emph {addive}误差的跨度构造的加权图。由于对加权图失败的最短路径邻域大小的关键引理,这些扩展不是立即的。尽管如此,我们还是恢复了合适的摊销版本,该版本使我们可以直接证明经典$+2 $和$+4 $未加权的跨度(包括全对和成对的跨度)至$+2W $和$+4W $加权跨度,其中$ w $是最大边缘重量。具体而言,我们表明,加权图$ g $包含$+2W $和$+4W $ $ o(n^{3/2})$和$ \ widetilde {o} {o}(n^{7/5})$(np o(np o(np o(np^{1/3})$ O(np),出于技术原因,$+6 $未加权的扳手成为$+8W $加权扳手;关闭此错误差距是一个有趣的剩余问题。也就是说,我们表明$ g $包含全对(成对)$+8W $加权跨度$ o(n^{4/3})$($ o(np^{1/4})$)。

A \emph{spanner} of a graph $G$ is a subgraph $H$ that approximately preserves shortest path distances in $G$. Spanners are commonly applied to compress computation on metric spaces corresponding to weighted input graphs. Classic spanner constructions can seamlessly handle edge weights, so long as error is measured \emph{multiplicatively}. In this work, we investigate whether one can similarly extend constructions of spanners with purely \emph{additive} error to weighted graphs. These extensions are not immediate, due to a key lemma about the size of shortest path neighborhoods that fails for weighted graphs. Despite this, we recover a suitable amortized version, which lets us prove direct extensions of classic $+2$ and $+4$ unweighted spanners (both all-pairs and pairwise) to $+2W$ and $+4W$ weighted spanners, where $W$ is the maximum edge weight. Specifically, we show that a weighted graph $G$ contains all-pairs (pairwise) $+2W$ and $+4W$ weighted spanners of size $O(n^{3/2})$ and $\widetilde{O}(n^{7/5})$ ($O(np^{1/3})$ and $O(np^{2/7})$) respectively. For a technical reason, the $+6$ unweighted spanner becomes a $+8W$ weighted spanner; closing this error gap is an interesting remaining open problem. That is, we show that $G$ contains all-pairs (pairwise) $+8W$ weighted spanners of size $O(n^{4/3})$ ($O(np^{1/4})$).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源