论文标题
DeepDualMapper:使用空中图像和轨迹自动提取的封闭式融合网络
DeepDualMapper: A Gated Fusion Network for Automatic Map Extraction using Aerial Images and Trajectories
论文作者
论文摘要
自动地图提取对于城市计算和基于位置的服务至关重要。航空图像和GPS轨迹数据是指两个不同的数据源,尽管它们携带不同类型的信息,但它们可以利用以生成地图。以前的大多数关于航空图像与来自辅助传感器数据之间数据融合的工作并不能完全利用模式的信息,因此遭受了信息丢失问题。我们提出了一个名为DeepDualMapper的深卷积神经网络,该网络以更无缝的方式融合空中图像和轨迹数据以提取数字图。我们设计一个封闭式的融合模块,以互补的感知方式明确控制两种模式的信息流。此外,我们提出了一种新颖的受监督的精炼解码器,以粗到精细的方式产生预测。我们的全面实验表明,DeepDualMapper可以比现有方法更有效地融合图像和轨迹的信息,并且能够以更高的精度生成地图。
Automatic map extraction is of great importance to urban computing and location-based services. Aerial image and GPS trajectory data refer to two different data sources that could be leveraged to generate the map, although they carry different types of information. Most previous works on data fusion between aerial images and data from auxiliary sensors do not fully utilize the information of both modalities and hence suffer from the issue of information loss. We propose a deep convolutional neural network called DeepDualMapper which fuses the aerial image and trajectory data in a more seamless manner to extract the digital map. We design a gated fusion module to explicitly control the information flows from both modalities in a complementary-aware manner. Moreover, we propose a novel densely supervised refinement decoder to generate the prediction in a coarse-to-fine way. Our comprehensive experiments demonstrate that DeepDualMapper can fuse the information of images and trajectories much more effectively than existing approaches, and is able to generate maps with higher accuracy.