论文标题

动态活性矢量场运输的客观障碍

Objective barriers to the transport of dynamically active vector fields

论文作者

Haller, George, Katsanoulis, Stergios, Holzner, Markus, Frohnapfel, Bettina, Gatti, Davide

论文摘要

我们得出了一种材料表面的理论,该理论可以最大程度地抑制动态活跃矢量场的扩散转运,例如线性动量,角动量或涡度,在一般流体流中。这些特殊的材料表面(\ emph {lagrangian活动屏障})提供了基于物理的,无观察者独立的边界的动态活性相干结构。我们发现,拉格朗日活动屏障从相关的稳定且不可压缩的\ emph {屏障方程}的不变表面演变,其右侧是动态活性矢量场的演化方程中粘性应力方程的时间平均回调。这些屏障的瞬时限制标记了目标\ emph {eulerian活动屏障},以使动态活性矢量场的短期扩散传输。我们在不稳定的Beltrami流动中获得了这一点,拉格朗日和欧拉的主动屏障与纯粹的对流传输屏障相吻合。在更一般的流动中,可以通过将拉格朗日相干结构(LCS)诊断(例如有限的lyapunov指数和极性旋转角度)应用于适当的活动屏障方程来识别主动屏障。与它们的被动对应物相比,这些\ emph {Active LCS诊断}不需要显着的流体颗粒分离,因此从时间短的速度数据集中提供了大量更高分辨的Lagrangian和Eulerian相干结构边界。我们说明了这些结果及其对二维,均质,各向同性湍流以及三维湍流流动的物理解释。

We derive a theory for material surfaces that maximally inhibit the diffusive transport of a dynamically active vector field, such as the linear momentum, the angular momentum or the vorticity, in general fluid flows. These special material surfaces (\emph{Lagrangian active barriers}) provide physics-based, observer-independent boundaries of dynamically active coherent structures. We find that Lagrangian active barriers evolve from invariant surfaces of an associated steady and incompressible \emph{barrier equation}, whose right-hand side is the time-averaged pullback of the viscous stress terms in the evolution equation for the dynamically active vector field. Instantaneous limits of these barriers mark objective \emph{Eulerian active barriers} to the short-term diffusive transport of the dynamically active vector field. We obtain that in unsteady Beltrami flows, Lagrangian and Eulerian active barriers coincide exactly with purely advective transport barriers bounding observed coherent structures. In more general flows, active barriers can be identified by applying Lagrangian coherent structure (LCS) diagnostics, such as the finite-time Lyapunov exponent and the polar rotation angle, to the appropriate active barrier equation. In comparison to their passive counterparts, these \emph{active LCS diagnostics} require no significant fluid particle separation and hence provide substantially higher-resolved Lagrangian and Eulerian coherent structure boundaries from temporally shorter velocity data sets. We illustrate these results and their physical interpretation on two-dimensional, homogeneous, isotropic turbulence and on a three-dimensional turbulent channel flow.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源