论文标题
交叉Z-互补对的新结构
New Constructions of Cross Z-Complementary Pairs
论文作者
论文摘要
空间调制(SM)是多输入多输出(MIMO)系统的新范式,其中在每个符号期间仅激活发射机处的一个天线。最近,观察到源自CORSS Z-Complentary Pairs(CZCP)的SM训练序列可导致频率选择通道的最佳通道估计性能。 CZCP是序列对的特殊形式,在某些时间班时,序列对的序列对和互相关区为零。 liu \ textit {et al。}的最新论文仅讨论了完美的czcps。在本文中,我们专注于不完美的CZCP。我们介绍了术语Z-汇总比,并基于此介绍了完美和不完美的CZCP。我们提出了基于广义布尔函数(GBF)的CZCPS系统构建。我们使用插入方法进一步扩展了CZCP的长度。提议的CZCP是$ 2^\ alpha10^\ beta26^γ+2〜(α\ geq1)$,$ 10^β+2 $,$ 26^γ+2 $和$ 10^β26^γγ+2 $的全部新长度。最后,我们提出了具有参数$(12,5)$和$(24,11)$的最佳二进制CZCP的构造。这些CZCP也将$(12N,5N)$ -CZCP和$(24N,11N)$ -CZCPS扩展到其中,其中$ n $是二进制Golay互补对(GCP)的长度。在证明期间,我们还发现了二进制CZCP的新结构特性,并得出结论所有二元GCP也是CZCP。最后,我们提供了一些数值模拟,以确认根据多路径的数量,建议的CZCP可用于设计SM训练矩阵,该矩阵达到最小平方误差。
Spatial modulation (SM) is a new paradigm of multiple-input multiple-output (MIMO) systems, in which only one antenna at the transmitter is activated during each symbol period. Recently, it is observed that SM training sequences derived from corss Z-complementary pairs (CZCPs) lead to optimal channel estimation performance over frequency-selective channels. CZCPs are special form of sequence pairs which have zero aperiodic autocorrelation zones and cross-correlation zone at certain time-shifts. Recent paper by Liu \textit{et al.} discussed only perfect CZCPs. In this paper, we focus on non-perfect CZCPs. We introduce the term cross Z-complementary ratio and re-categorise the CZCPs, both perfect and non-perfect, based on that. We propose a systematic construction of CZCPs based on generalised Boolean functions (GBFs). We further extend the lengths of the CZCPs by using the insertion method. The proposed CZCPs are all of new lengths of the form $2^\alpha10^\beta26^γ+2~(α\geq1)$, $10^β+2$, $26^γ+2$ and $10^β26^γ+2$. Finally we propose a construction of optimal binary CZCPs having parameters $(12,5)$ and $(24,11)$ from binary Barker sequences. These CZCPs are also extended to $(12N,5N)$- CZCPs and $(24N,11N)$- CZCPs, where $N$ is the length of a binary Golay complementary pair (GCP). During the proof, we also found a new structural property of binary CZCPs and concluded all binary GCPs are CZCPs too. Finally, we give some numerical simulations to confirm that depending on the number of multi-paths, the proposed CZCPs can be used to design SM training matrix which attains the minimum mean square error.