论文标题

基于DL的交通分类器更新的自主未知应用过滤和标签

Autonomous Unknown-Application Filtering and Labeling for DL-based Traffic Classifier Update

论文作者

Zhang, Jielun, Li, Fuhao, Ye, Feng, Wu, Hongyu

论文摘要

网络流量分类已被广泛研究以从根本上提高网络测量和管理。机器学习是网络流量分类的有效方法之一。具体而言,深度学习(DL)由于其有效性即使在加密的网络流量中,也没有损害用户隐私也不损害网络安全性,因此引起了研究人员的广泛关注。但是,大多数现有模型都是由封闭世界数据集创建的,因此它们只能对先前采样和标记的那些现有类进行分类。在这种情况下,未知类无法正确分类。为了解决此问题,提出了一个自主学习框架,以有效地更新主动操作期间基于DL的交通分类模型。所提出的框架的核心由一个基于DL的分类器,一个自学的歧视器和一个自主的自我标记模型组成。鉴别器和自标记过程可以在活动操作期间生成新数据集,以支持分类器更新。提出的框架的评估是在开放数据集(即ISCX VPN-NONVPN)上进行的,并独立收集的数据包进行了评估。结果表明,所提出的自主学习框架可以从未知类中过滤数据包并提供准确的标签。因此,可以使用自主生成的数据集成功更新基于DL的分类模型。

Network traffic classification has been widely studied to fundamentally advance network measurement and management. Machine Learning is one of the effective approaches for network traffic classification. Specifically, Deep Learning (DL) has attracted much attention from the researchers due to its effectiveness even in encrypted network traffic without compromising neither user privacy nor network security. However, most of the existing models are created from closed-world datasets, thus they can only classify those existing classes previously sampled and labeled. In this case, unknown classes cannot be correctly classified. To tackle this issue, an autonomous learning framework is proposed to effectively update DL-based traffic classification models during active operations. The core of the proposed framework consists of a DL-based classifier, a self-learned discriminator, and an autonomous self-labeling model. The discriminator and self-labeling process can generate new dataset during active operations to support classifier update. Evaluation of the proposed framework is performed on an open dataset, i.e., ISCX VPN-nonVPN, and independently collected data packets. The results demonstrate that the proposed autonomous learning framework can filter packets from unknown classes and provide accurate labels. Thus, corresponding DL-based classification models can be updated successfully with the autonomously generated dataset.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源