论文标题
基于单向耦合的自旋波二极管和循环器
Spin-wave diode and circulator based on unidirectional coupling
论文作者
论文摘要
在Magnonics中,以低能消耗为特征的波物理学的新兴分支,非常需要在自旋波计算范围内实现电路元件。在这里,基于数值模拟,我们演示了自旋波二极管和循环器的功能,以在GHz策略中引导和操纵旋转波。他们利用界面dzyaloshinskii-moriya相互作用引起的单向耦合,将旋转波在薄的铁磁层之间传递,仅在一个繁殖方向上传递。使用由PY和CO组成的多层结构直接与PT接触,我们获得了高效率的亚微米大小的设备。在二极管中,向前和反向方向之间的功率损耗比达到22 dB,而在四端口循环器中,效率超过13 dB。因此,我们的工作有助于节能的宏伟逻辑设备的新兴分支,由于自旋波的短波长,可以实现纳米级设备。
In magnonics, an emerging branch of wave physics characterized by low-energy consumption, it is highly desirable to realize circuit elements within the scope of spin-wave computing. Here, based on numerical simulations, we demonstrate the functionality of the spin-wave diode and the circulator to steer and manipulate spin waves over a wide range of frequency in the GHz regime. They take advantage of the unidirectional coupling induced by the interfacial Dzyaloshinskii-Moriya interaction to transfer the spin wave between thin ferromagnetic layers in only one direction of propagation. Using the multilayered structure consisting of Py and Co in direct contact with Pt, we obtain sub-micrometer-size devices of high efficiency. In the diode, the power loss ratio between forward and reverse direction reaches 22 dB, while in the four-port circulator, the efficiency exceeds 13 dB. Thus, our work contributes to the emerging branch of energy-efficient magnonic logic devices, where, thanks to short wavelength of spin waves, it is possible to realize nanoscale devices.