论文标题

PointFilter:通过Encoder-Decoder建模进行点云过滤

Pointfilter: Point Cloud Filtering via Encoder-Decoder Modeling

论文作者

Zhang, Dongbo, Lu, Xuequan, Qin, Hong, He, Ying

论文摘要

点云过滤是几何建模和处理中的基本问题。尽管近年来取得了重大进步,但现有方法仍然遭受两个问题的困扰:1)它们的设计而没有保留敏锐的功能,或者在功能保存方面具有更少的鲁棒性; 2)它们通常具有许多参数,需要乏味的参数调整。在本文中,我们提出了一种新颖的深度学习方法,该方法通过消除噪声并保留其清晰的特征来自动,稳健地过滤云。我们的点学习架构由编码器和解码器组成。编码器将点(一个点及其邻居)直接作为输入,并学习了一个潜在的表示向量,该向量通过解码器将地面真实位置与位移向量相关联。训练有素的神经网络可以自动从嘈杂的输入中生成一组清洁点。广泛的实验表明,我们的方法在视觉质量和定量误差指标方面都优于最先进的深度学习技术。可以在https://github.com/dongbo-buaa-vr/pointfilter上找到源代码和数据集。

Point cloud filtering is a fundamental problem in geometry modeling and processing. Despite of significant advancement in recent years, the existing methods still suffer from two issues: 1) they are either designed without preserving sharp features or less robust in feature preservation; and 2) they usually have many parameters and require tedious parameter tuning. In this paper, we propose a novel deep learning approach that automatically and robustly filters point clouds by removing noise and preserving their sharp features. Our point-wise learning architecture consists of an encoder and a decoder. The encoder directly takes points (a point and its neighbors) as input, and learns a latent representation vector which goes through the decoder to relate the ground-truth position with a displacement vector. The trained neural network can automatically generate a set of clean points from a noisy input. Extensive experiments show that our approach outperforms the state-of-the-art deep learning techniques in terms of both visual quality and quantitative error metrics. The source code and dataset can be found at https://github.com/dongbo-BUAA-VR/Pointfilter.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源