论文标题

通过结构化矩阵分解的分层重叠信念估计

Hierarchical Overlapping Belief Estimation by Structured Matrix Factorization

论文作者

Yang, Chaoqi, Li, Jinyang, Wang, Ruijie, Yao, Shuochao, Shao, Huajie, Liu, Dongxin, Liu, Shengzhong, Wang, Tianshi, Abdelzaher, Tarek F.

论文摘要

社交媒体意见两极分化的大量工作集中在媒体痕迹不同社区的立场(或正交信念)的平坦分类。我们在两个重要方面扩展了这项工作。首先,我们不仅检测到社区之间的分歧点,而且还检测到一致性点。换句话说,我们在存在重叠的情况下估计社区信念。其次,代替平坦的分类,我们考虑了层次的信念估计,在该估计中,社区可能会分层。例如,两个反对党可能在核心问题上不同意,但是在一方,尽管同意基本面,但在进一步的细节上可能会出现分歧。我们称由此产生的组合问题为分层重叠的信念估计问题。为了解决它,本文开发了一类新的无监督的非负矩阵分解(NMF)算法,我们称信仰结构化矩阵分解(BSMF)。我们提出的无监督算法捕获了潜在的信念交叉点和差异性以及等级结构。我们讨论算法的属性,并在合成和现实世界数据集上对其进行评估。在合成数据集中,我们的模型将误差降低了40%。在实际的Twitter痕迹中,它的准确性提高了约10%。该模型还可以在理智检查中实现96.08%的自洽性。

Much work on social media opinion polarization focuses on a flat categorization of stances (or orthogonal beliefs) of different communities from media traces. We extend in this work in two important respects. First, we detect not only points of disagreement between communities, but also points of agreement. In other words, we estimate community beliefs in the presence of overlap. Second, in lieu of flat categorization, we consider hierarchical belief estimation, where communities might be hierarchically divided. For example, two opposing parties might disagree on core issues, but within a party, despite agreement on fundamentals, disagreement might occur on further details. We call the resulting combined problem a hierarchical overlapping belief estimation problem. To solve it, this paper develops a new class of unsupervised Non-negative Matrix Factorization (NMF) algorithms, we call Belief Structured Matrix Factorization (BSMF). Our proposed unsupervised algorithm captures both the latent belief intersections and dissimilarities, as well as a hierarchical structure. We discuss the properties of the algorithm and evaluate it on both synthetic and real-world datasets. In the synthetic dataset, our model reduces error by 40%. In real Twitter traces, it improves accuracy by around 10%. The model also achieves 96.08% self-consistency in a sanity check.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源