论文标题

在两个简单多边形的相交数量上几乎最佳的结合

An almost optimal bound on the number of intersections of two simple polygons

论文作者

Ackerman, Eyal, Keszegh, Balázs, Rote, Günter

论文摘要

假设一般位置的简单$ m $ - gon和简单的$ n $ -gon的边界的交叉点的最大数量是多少?这是组合几何形状中的一个基本问题,如果至少有$ m $和$ n $的一个均为$ m $和$ n $,那么答案很容易,那么每一侧都可以交叉,因此答案为$ mn $。如果恰好一个多边形(例如$ n $ gon)具有奇数的侧面,那么它最多可以与$ m $ -gon的每一侧相交,最多可以$ n-1 $ times;因此,最多有$ MN-M $交叉点。构建符合这些界限的示例并不难。如果$ m $和$ n $都是奇怪的,那么最著名的结构具有$ MN-(m+n)+3 $交叉点,并且猜想这是最大值。但是,最著名的上限仅为$ Mn-(M + \ lceil \ frac {n} {6} \ rceil)$,对于$ m \ ge n $。对于某些常数$ c $,我们证明了$ MN-(m+n)+c $的新上限,除了$ c $的价值外,这是最佳的。

What is the maximum number of intersections of the boundaries of a simple $m$-gon and a simple $n$-gon, assuming general position? This is a basic question in combinatorial geometry, and the answer is easy if at least one of $m$ and $n$ is even: If both $m$ and $n$ are even, then every pair of sides may cross and so the answer is $mn$. If exactly one polygon, say the $n$-gon, has an odd number of sides, it can intersect each side of the $m$-gon at most $n-1$ times; hence there are at most $mn-m$ intersections. It is not hard to construct examples that meet these bounds. If both $m$ and $n$ are odd, the best known construction has $mn-(m+n)+3$ intersections, and it is conjectured that this is the maximum. However, the best known upper bound is only $mn-(m + \lceil \frac{n}{6} \rceil)$, for $m \ge n$. We prove a new upper bound of $mn-(m+n)+C$ for some constant $C$, which is optimal apart from the value of $C$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源