论文标题
具有异国情调接触边界的Stein域
Stein domains with exotic contact boundaries
论文作者
论文摘要
我们介绍了一个新的不变性\ textIt {pastor Idempotent group},以强烈渐近地在动态凸接触歧管上。该不变性可用于区分不同的接触结构。作为一个应用程序,对于任何复杂的尺寸$ n> 8 $和任何积极的整数$ k $,我们可以构造$ n- $ dimentional stein流形$ v_0,v_1,v_1,\ cdots,v_k $,使得$ \ tilde {h} _j(v_i)= 0,j \ neq n-n $ sym ys sompteral ins ye somptract ins ye sompters Insploct类,但不接触型。
We introduce a new invariant, the \textit{positive idempotent group}, for strongly asymptotically dynamically convex contact manifolds. This invariant can be used to distinguish different contact structures. As an application, for any complex dimension $n>8$ and any positive integer $k$, we can construct $n-$dimensional Stein manifolds $V_0,V_1,\cdots,V_k$ such that $\tilde{H}_j(V_i)=0, j\neq n-1,n$, $V_i's$ are almost symplectomorphic, their boundaries are in the same almost contact class but not contactomorphic.