论文标题

落后的重要性抽样,用于在线估计国家空间模型

Backward importance sampling for online estimation of state space models

论文作者

Martin, Alice, Etienne, Marie-Pierre, Gloaguen, Pierre, Corff, Sylvain Le, Olsson, Jimmy

论文摘要

本文提出了一种新的顺序蒙特卡洛算法,以在状态空间模型的背景下执行在线估计,当时潜在状态的过渡密度或鉴于状态的有条件观察可能性是棘手的。在这种情况下,鉴于观察结果,获得未观察到的状态的后验分布下的期望值较低,这是一项艰巨的任务。在最新的伪划分顺序蒙特卡洛·史密斯(Monte Carlo Smoothorth)的理论结果之后,引入了伪划分向后的重要性采样步骤,以估计这种期望。这一新步骤允许基于接受性拒绝程序的相似性能的拒绝程序,从而大大减少现有数值解决方案的计算时间,并扩大此类方法的合格模型类别。例如,在多元随机微分方程的背景下,所提出的算法利用了对未知过渡密度在比标准替代方案较弱的情况下对未知过渡密度的无偏估计。在部分观察到的扩散过程的背景下,以及在二维部分观察到的随机观察到的随机Lotka-Volterra模型的情况下,评估了高维离散时间潜在数据模型的高维度潜在数据模型的性能,以评估该估计器的性能。

This paper proposes a new Sequential Monte Carlo algorithm to perform online estimation in the context of state space models when either the transition density of the latent state or the conditional likelihood of an observation given a state is intractable. In this setting, obtaining low variance estimators of expectations under the posterior distributions of the unobserved states given the observations is a challenging task. Following recent theoretical results for pseudo-marginal sequential Monte Carlo smoothers, a pseudo-marginal backward importance sampling step is introduced to estimate such expectations. This new step allows to reduce very significantly the computational time of the existing numerical solutions based on an acceptance-rejection procedure for similar performance, and to broaden the class of eligible models for such methods. For instance, in the context of multivariate stochastic differential equations, the proposed algorithm makes use of unbiased estimates of the unknown transition densities under much weaker assumptions than standard alternatives. The performance of this estimator is assessed for high-dimensional discrete-time latent data models, for recursive maximum likelihood estimation in the context of partially observed diffusion process, and in the case of a bidimensional partially observed stochastic Lotka-Volterra model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源