论文标题

在微流体通道中流动的软颗粒的同几何边界元素方法

An isogeometric boundary element method for soft particles flowing in microfluidic channels

论文作者

Lyu, J. M., Chen, Paul G., Boedec, G., Leonetti, M., Jaeger, M.

论文摘要

了解可变形的颗粒(例如液滴,合成胶囊和囊泡)的流动以及限制在小通道中的生物细胞对于广泛的潜在化学和生物医学工程应用至关重要。在低雷诺数流动中,这种流体结构(膜)相互作用的计算机模拟引起了由于流动应力之间的复杂相互作用,复杂粒子的界面机械性能和流体限制所面临的重大挑战。在这里,我们通过结合有限元方法(FEM)和边界元素方法(BEM)来介绍一个等几何计算框架,以准确预测在微流体通道中运输的单个软粒子的变形和运动。所提出的数值框架是通过同几何分析范式始终构建的。 Loop的细分元素不仅用于表示几何形状,还用于膜力学求解器(FEM)和界面流体动力学求解器(BEM)。我们通过将模拟结果与高度精确的基准溶液与文献中的两个知名示例进行比较,即在圆形管中具有恒定表面张力的液体滴和一个在方形通道中具有非常薄的超弹性膜的胶囊。我们表明,数值方法在时间和空间中都表现出二阶收敛。为了进一步证明该算法的准确性和长期稳定的模拟,我们对具有弯曲刚度的脂质囊泡进行流体动力计算,并在毛细管中具有复合膜的红细胞。目前的工作提供了一些可能研究限制软颗粒的变形行为的可能性,尤其是颗粒的形状过渡和动力学及其在通道流中的流变学标志。

Understanding the flow of deformable particles such as liquid drops, synthetic capsules and vesicles, and biological cells confined in a small channel is essential to a wide range of potential chemical and biomedical engineering applications. Computer simulations of this kind of fluid-structure (membrane) interaction in low-Reynolds-number flows raise significant challenges faced by an intricate interplay between flow stresses, complex particles' interfacial mechanical properties, and fluidic confinement. Here, we present an isogeometric computational framework by combining the finite-element method (FEM) and boundary-element method (BEM) for an accurate prediction of the deformation and motion of a single soft particle transported in microfluidic channels. The proposed numerical framework is constructed consistently with the isogeometric analysis paradigm; Loop's subdivision elements are used not only for the representation of geometry but also for the membrane mechanics solver (FEM) and the interfacial fluid dynamics solver (BEM). We validate our approach by comparison of the simulation results with highly accurate benchmark solutions to two well-known examples available in the literature, namely a liquid drop with constant surface tension in a circular tube and a capsule with a very thin hyperelastic membrane in a square channel. We show that the numerical method exhibits second-order convergence in both time and space. To further demonstrate the accuracy and long-time numerically stable simulations of the algorithm, we perform hydrodynamic computations of a lipid vesicle with bending stiffness and a red blood cell with a composite membrane in capillaries. The present work offers some possibilities to study the deformation behavior of confining soft particles, especially the particles' shape transition and dynamics and their rheological signature in channel flows.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源