论文标题

分类不平衡:基于范式的评论

Imbalanced classification: a paradigm-based review

论文作者

Feng, Yang, Zhou, Min, Tong, Xin

论文摘要

科学研究和行业中分类的一个普遍问题是阶级不平衡的存在。当不同类别的样本量在训练数据中不平衡时,天真地实施分类方法通常会导致对测试数据的预测结果不令人满意。已经提出了多种重新采样技术来解决类不平衡问题。但是,没有关于何时使用每种技术的一般指导。在本文中,我们提供了基于范式的二进制分类的常见重采样技术的评论。我们考虑的范例包括将整体分类错误最小化的经典范式,成本敏感的学习范式最小化成本调整的加权I型和II型错误,以及Neyman-Pearson范式,该范式可将II型I类级错误限制的II型型号最小化。在每个范式下,我们研究了重采样技术和一些最先进的分类方法的组合。对于每对重采样技术和分类方法,我们使用模拟研究和信用卡欺诈的真实数据来研究不同评估指标下的绩效。从这些广泛的数值实验中,我们在每个分类范式下证明了重采样技术之间的复杂动态,基本分类方法,评估指标和不平衡比率。我们还概述了一些有关重采样技术和基本分类方法的选择的外卖消息,这对从业者可能很有帮助。

A common issue for classification in scientific research and industry is the existence of imbalanced classes. When sample sizes of different classes are imbalanced in training data, naively implementing a classification method often leads to unsatisfactory prediction results on test data. Multiple resampling techniques have been proposed to address the class imbalance issues. Yet, there is no general guidance on when to use each technique. In this article, we provide a paradigm-based review of the common resampling techniques for binary classification under imbalanced class sizes. The paradigms we consider include the classical paradigm that minimizes the overall classification error, the cost-sensitive learning paradigm that minimizes a cost-adjusted weighted type I and type II errors, and the Neyman-Pearson paradigm that minimizes the type II error subject to a type I error constraint. Under each paradigm, we investigate the combination of the resampling techniques and a few state-of-the-art classification methods. For each pair of resampling techniques and classification methods, we use simulation studies and a real data set on credit card fraud to study the performance under different evaluation metrics. From these extensive numerical experiments, we demonstrate under each classification paradigm, the complex dynamics among resampling techniques, base classification methods, evaluation metrics, and imbalance ratios. We also summarize a few takeaway messages regarding the choices of resampling techniques and base classification methods, which could be helpful for practitioners.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源