论文标题
分数衍生流变学模型的时间反应函数
Time-Response Functions of Fractional-Derivative Rheological Models
论文作者
论文摘要
鉴于越来越关注由幂律描述的复杂流体的时间响应,与捕获高频微流性体现的惯性效应有关,我们计算了串行中的五个基本时间响应函数或两个基本分数衍生元素的平行性元素,这两个基本衍生元素的连接已知,称为Scott-Blair Blair(Scott-Blair Bliair(Springpot))。每个Scott-Blair元件中的分数分化顺序可以超过达到2的统一,在此极限情况下,Scott-Bliair元件变成了Inerter-电容器的机械类似物,其输出力仅与其最终节点的相对加速度成比例。通过这种概括,可以超越传统的粘弹性行为来捕获惯性作用。除了放松模量和蠕变配合外,我们还计算了记忆函数的封闭形式表达式,脉冲流体(脉冲响应函数)和脉冲应变率响应函数的全面分数麦克斯韦流体,广义的分数衍生衍生物衍生衍生物Kelvin-voigt元素及其专业案例及其专业案例和其专业案例已被培养在文献中。这些计算的核心是Dirac Delta函数的分数衍生物,它使得嵌入在两参数Mittag-Leffler函数的分数衍生物中的奇异性可能会在分数衍生物rheoological Modes的时间反应函数中均无用。
In view of the increasing attention to the time responses of complex fluids described by power-laws in association with the need to capture inertia effects that manifest in high-frequency microrheology, we compute the five basic time-response functions of in-series or in-parallel connections of two elementary fractional derivative elements known as the Scott-Blair (springpot) element. The order of fractional differentiation in each Scott-Blair element is allowed to exceed unity reaching values up to 2 and at this limit-case the Scott-Blair element becomes an inerter--a mechanical analogue of the electric capacitor that its output force is proportional only to the relative acceleration of its end-nodes. With this generalization, inertia effects may be captured beyond the traditional viscoelastic behavior. In addition to the relaxation moduli and the creep compliances, we compute closed form expressions of the memory functions, impulse fluidities (impulse response functions) and impulse strain-rate response functions of the generalized fractional derivative Maxwell fluid, the generalized fractional derivative Kelvin-Voigt element and their special cases that have been implemented in the literature. Central to these calculations is the fractional derivative of the Dirac delta function which makes possible the extraction of singularities embedded in the fractional derivatives of the two-parameter Mittag-Leffler function that emerges invariably in the time-response functions of fractional derivative rheological modes.