论文标题

对差分代数和rota-baxter代数的操作员扩展,单调提升和分配定律的分类

Classification of operator extensions, monad liftings and distributive laws for differential algebras and Rota-Baxter algebras

论文作者

Zhang, Shilong, Guo, Li, Keigher, William

论文摘要

在\ cite {zgk2}中考虑了概括微积分(FFTC)的第一个基本定理(FFTC)的代数公式。对于给定的限制,差异和旋转式运算符的扩展,单调和共同的升降机以及混合分布定律的延伸效果被证明是等效的。在本文中,我们对满足这些等效条件的约束进行分类。

Generalizing the algebraic formulation of the First Fundamental Theorem of Calculus (FFTC), a class of constraints involving a pair of operators was considered in \cite{ZGK2}. For a given constraint, the existences of extensions of differential and Rota-Baxter operators, of liftings of monads and comonads, and of mixed distributive laws are shown to be equivalent. In this paper, we give a classification of the constraints satisfying these equivalent conditions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源