论文标题
曲曲法的最大不平等现象
Maximizers for Strichartz Inequalities on the Torus
论文作者
论文摘要
我们研究了圆环上的单参数strichartz家族的最大化剂的存在。总的来说,最大化序列可能无法在$ l^2(\ Mathbb t)$中进行预编辑,并且最大化器可能不存在。我们为最大化序列(在傅立叶空间中翻译之后)的预发提供了足够的条件,并验证了最大化序列的存在,以了解一系列参数值。 Strichartz不平等的最大化器对应于分散纤维中光脉冲的模型方程的稳定,周期性(在时空和时间上)的溶液。
We study the existence of maximizers for a one-parameter family of Strichartz inequalities on the torus. In general maximizing sequences can fail to be precompact in $L^2(\mathbb T)$, and maximizers can fail to exist. We provide a sufficient condition for precompactness of maximizing sequences (after translation in Fourier space), and verify the existence of maximizers for a range of values of the parameter. Maximizers for the Strichartz inequalities correspond to stable, periodic (in space and time) solutions of a model equation for optical pulses in a dispersion-managed fiber.