论文标题

超过$ R_0 $:中等感染和概率流行预测的异质性

Beyond $R_0$: Heterogeneity in secondary infections and probabilistic epidemic forecasting

论文作者

Hébert-Dufresne, Laurent, Althouse, Benjamin M., Scarpino, Samuel V., Allard, Antoine

论文摘要

基本的生殖数字 - $ r_0 $ - 是公共卫生中最常见,最常用的数字之一。尽管经常用来比较暴发和预测大流行风险,但这个单个数字掩盖了两种不同病原体可以表现出的复杂性,即使它们具有相同的$ r_0 $。在这里,我们展示了如何使用二次感染分布的估计来预测暴发规模,从而利用其平均$ R_0 $和基本异质性。为此,我们从随机网络理论中重新制定并扩展了经典的结果,该理论依靠接触跟踪数据同时确定第一刻($ r_0 $)和较高的矩(代表异质性)在二次感染的分布中。此外,我们展示了在新兴病原体的数据筛选现实中可以实现此框架的不同方式。最后,我们证明,没有有关二次感染的异质性数据的数据,例如Covid-19,例如Covid-19,爆发大小的不确定性范围很大。综上所述,我们的工作强调了在新兴的传染病暴发期间进行接触追踪的关键需求,并且在预测流行病大小时需要超过$ R_0 $的需求。

The basic reproductive number -- $R_0$ -- is one of the most common and most commonly misapplied numbers in public health. Although often used to compare outbreaks and forecast pandemic risk, this single number belies the complexity that two different pathogens can exhibit, even when they have the same $R_0$. Here, we show how to predict outbreak size using estimates of the distribution of secondary infections, leveraging both its average $R_0$ and the underlying heterogeneity. To do so, we reformulate and extend a classic result from random network theory that relies on contact tracing data to simultaneously determine the first moment ($R_0$) and the higher moments (representing the heterogeneity) in the distribution of secondary infections. Further, we show the different ways in which this framework can be implemented in the data-scarce reality of emerging pathogens. Lastly, we demonstrate that without data on the heterogeneity in secondary infections for emerging infectious diseases like COVID-19, the uncertainty in outbreak size ranges dramatically. Taken together, our work highlights the critical need for contact tracing during emerging infectious disease outbreaks and the need to look beyond $R_0$ when predicting epidemic size.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源