论文标题

$ k_n $ - 至少$ 2N $顶点的免费字符图

$K_n$-free Character Graphs with at Least $2n$ Vertices

论文作者

Ebrahimi, Mahdi

论文摘要

对于有限的$ g $,让$δ(g)$表示构建的字符图,构建在$ g $的不可约合复杂字符的一组。 \ cite {[at]}中的akhlaghi和tong-viet认为,如果对于某些正整数$ n $,$δ(g)$是$ k_n $ -free,则$δ(g)$最多具有$ 2N-1 $ $ VERTICES。在本文中,我们提供了一个示例,以表明此猜想不一定是所有不可解决的群体的构想,其字符图为$ k_n $ free。

For a finite group $G$, let $Δ(G)$ denote the character graph built on the set of degrees of the irreducible complex characters of $G$. Akhlaghi and Tong-Viet in \cite{[AT]} conjectured that if for some positive integer $n$, $Δ(G)$ is $K_n$-free, then $Δ(G)$ has at most $2n-1$ vertices. In this paper, we present an example to show that this conjecture is not necessarily true for all non-solvable groups whose character graphs are $K_n$-free.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源