论文标题
物联网中使用机器学习和区块链的安全性和隐私:威胁和对策
Security and Privacy in IoT Using Machine Learning and Blockchain: Threats & Countermeasures
论文作者
论文摘要
由于物联网(IoT)设备参与了许多应用程序,用户的安全性和隐私已成为重大问题。网络威胁以爆炸性的速度增长,使现有的安全性和隐私措施不足。因此,互联网上的每个人都是黑客的产品。因此,机器学习(ML)算法用于从大型复杂数据库中产生准确的输出,在该数据库中,生成的输出可用于预测和检测基于IoT的系统中的漏洞。此外,区块链(BC)技术在解决安全性和隐私问题的现代物联网应用中变得越来越流行。已经对ML算法或BC技术进行了几项研究。但是,这些研究使用ML算法或BC技术针对安全性或隐私问题,因此需要对近年来通过ML算法和BC技术解决安全性和隐私问题的合并调查。在本文中,我们提供了过去几年(从2008年到2019年)所做的研究工作的摘要,该研究使用ML算法和物联网域中的BCTECHNIQUES解决了安全性和隐私问题。首先,我们讨论并分类了过去十二年来在物联网领域报告的各种安全和隐私威胁。然后,我们根据ML算法和物联网域中的ML算法和BC技术对文献进行了分类。最后,我们确定并阐明了使用ML算法和BC技术来解决物联网领域中的安全性和隐私问题的几个挑战和未来的研究指示。
Security and privacy of the users have become significant concerns due to the involvement of the Internet of things (IoT) devices in numerous applications. Cyber threats are growing at an explosive pace making the existing security and privacy measures inadequate. Hence, everyone on the Internet is a product for hackers. Consequently, Machine Learning (ML) algorithms are used to produce accurate outputs from large complex databases, where the generated outputs can be used to predict and detect vulnerabilities in IoT-based systems. Furthermore, Blockchain (BC) techniques are becoming popular in modern IoT applications to solve security and privacy issues. Several studies have been conducted on either ML algorithms or BC techniques. However, these studies target either security or privacy issues using ML algorithms or BC techniques, thus posing a need for a combined survey on efforts made in recent years addressing both security and privacy issues using ML algorithms and BC techniques. In this paper, we provide a summary of research efforts made in the past few years, starting from 2008 to 2019, addressing security and privacy issues using ML algorithms and BCtechniques in the IoT domain. First, we discuss and categorize various security and privacy threats reported in the past twelve years in the IoT domain. Then, we classify the literature on security and privacy efforts based on ML algorithms and BC techniques in the IoT domain. Finally, we identify and illuminate several challenges and future research directions in using ML algorithms and BC techniques to address security and privacy issues in the IoT domain.