论文标题

一种深度学习方法,可以在计算机断层扫描图像上自动化高分辨率血管重建,无论是否使用对比剂

A Deep Learning Approach to Automate High-Resolution Blood Vessel Reconstruction on Computerized Tomography Images With or Without the Use of Contrast Agent

论文作者

Chandrashekar, Anirudh, Handa, Ashok, Shivakumar, Natesh, Lapolla, Pierfrancesco, Grau, Vicente, Lee, Regent

论文摘要

从计算机断层扫描(CT)血管造影重建血管结构的现有方法取决于注射静脉对比度以增强血管内管道内的无线密度。但是,血管,血管壁或两者的组合可以存在病理变化,以防止准确重建。在主动脉动脉瘤疾病的例子中,在70-80%的病例中存在延伸动脉瘤囊内主动脉壁粘附的血凝块或血栓形成。这些变形可以通过当前方法自动提取重要的临床相关信息。在这项研究中,我们实施了一种带有注意门控的经过改进的U-NET架构,以建立在使用或不使用对比剂的情况下获得的CT图像中病理血管中的高通量和自动分割管道。随机选择,手动注释并用于模型训练和评估(13/13),随机选择了牛津腹主动脉瘤(OXAAA)研究中有26例成对的非对比度和对比增强的CT图像(OXAAA)研究。实施了数据增强方法,以使培训数据集的比例为10:1。将基于注意力的U-NET与CT血管造影(CTA)提取内腔和外壁的性能,并与通用的3-D U-NET进行了比较,并显示出较高的结果。随后从对比增强的CTA和非对比度CT图像中的主动脉分割管道内实现了此网络体系结构,使得可以准确有效地提取整个主动脉量。该提取的体积可用于标准化动脉瘤疾病管理的当前方法,并为随后的复杂几何和形态分析奠定了基础。此外,提出的管道可以扩展到其他血管病理。

Existing methods to reconstruct vascular structures from a computed tomography (CT) angiogram rely on injection of intravenous contrast to enhance the radio-density within the vessel lumen. However, pathological changes can be present in the blood lumen, vessel wall or a combination of both that prevent accurate reconstruction. In the example of aortic aneurysmal disease, a blood clot or thrombus adherent to the aortic wall within the expanding aneurysmal sac is present in 70-80% of cases. These deformations prevent the automatic extraction of vital clinically relevant information by current methods. In this study, we implemented a modified U-Net architecture with attention-gating to establish a high-throughput and automated segmentation pipeline of pathological blood vessels in CT images acquired with or without the use of a contrast agent. Twenty-six patients with paired non-contrast and contrast-enhanced CT images within the ongoing Oxford Abdominal Aortic Aneurysm (OxAAA) study were randomly selected, manually annotated and used for model training and evaluation (13/13). Data augmentation methods were implemented to diversify the training data set in a ratio of 10:1. The performance of our Attention-based U-Net in extracting both the inner lumen and the outer wall of the aortic aneurysm from CT angiograms (CTA) was compared against a generic 3-D U-Net and displayed superior results. Subsequent implementation of this network architecture within the aortic segmentation pipeline from both contrast-enhanced CTA and non-contrast CT images has allowed for accurate and efficient extraction of the entire aortic volume. This extracted volume can be used to standardize current methods of aneurysmal disease management and sets the foundation for subsequent complex geometric and morphological analysis. Furthermore, the proposed pipeline can be extended to other vascular pathologies.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源