论文标题

野外的两际流听觉影响分析

Two-Stream Aural-Visual Affect Analysis in the Wild

论文作者

Kuhnke, Felix, Rumberg, Lars, Ostermann, Jörn

论文摘要

人类情感识别是自然人类相互作用的重要组成部分。但是,当前的方法仍处于起步阶段,尤其是对于野外数据。在这项工作中,我们将提交介绍给2020年野外情感行为分析(ABAW)。我们提出了一个两流听觉分析模型,以识别视频中的情感行为。音频和图像流首先分别处理并馈入卷积神经网络。而不是将经常性体系结构应用于时间分析,而仅使用时间卷积。此外,该模型可以访问面部对齐期间提取的其他功能。在培训时,我们利用不同情绪表征之间的相关性来提高性能。我们的模型在具有挑战性的AFF-WILD2数据库上取得了令人鼓舞的结果。

Human affect recognition is an essential part of natural human-computer interaction. However, current methods are still in their infancy, especially for in-the-wild data. In this work, we introduce our submission to the Affective Behavior Analysis in-the-wild (ABAW) 2020 competition. We propose a two-stream aural-visual analysis model to recognize affective behavior from videos. Audio and image streams are first processed separately and fed into a convolutional neural network. Instead of applying recurrent architectures for temporal analysis we only use temporal convolutions. Furthermore, the model is given access to additional features extracted during face-alignment. At training time, we exploit correlations between different emotion representations to improve performance. Our model achieves promising results on the challenging Aff-Wild2 database.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源