论文标题
在$ \ ast- $反向衍生地图上
On $\ast-$Reverse Derivable Maps
论文作者
论文摘要
令$ r $为一个戒指,其中包含一个非平凡的对称性元素$ e $。令$δ:r \ rightarrow r $为映射,以使$δ(ab)=δ(b)a^{\ ast}+b^{\ ast}δ(a)$ in r $ in r $ in R $,我们称$ a,b \ in $ a $ a $ a $ a $ a $ \ ast-a $ \ ast-a $ \ ast-a $ \ ast-a $ \ ast- $ reverseverable Map on $ r $。在本文中,我们的目的是表明,在$ r $上施加的一些适当限制下,每$ \ ast- $反向衍生的地图$ r $都是加性的。
Let $R$ be a ring with involution containing a nontrivial symmetric idempotent element $e$. Let $δ: R\rightarrow R$ be a mapping such that $δ(ab)=δ(b)a^{\ast}+b^{\ast}δ(a)$ for all $a,b\in R$, we call $δ$ a $\ast-$reverse derivable map on $R$. In this paper, our aim is to show that under some suitable restrictions imposed on $R$, every $\ast-$reverse derivable map of $R$ is additive.