论文标题

向虚构$ 0 $ neart邻居及其提高的融合率外推

Extrapolation Towards Imaginary $0$-Nearest Neighbour and Its Improved Convergence Rate

论文作者

Okuno, Akifumi, Shimodaira, Hidetoshi

论文摘要

$ k $ - 最新的邻居($ k $ -nn)是用于监督分类的最简单,最广泛使用的方法之一,它通过取下$ k $对象的观测标签的加权比来预测查询的标签。权重和参数$ k \ in \ mathbb {n} $规范其偏差差异,而权衡会隐含影响$ k $ -nn分类器的多余风险的收敛率;现有的一些研究考虑选择最佳$ K $和权重以获得更快的收敛速度。尽管已广泛开发了具有非负重的$ K $ -NN,但也证明负权重对于消除偏差术语并达到最佳收敛率至关重要。在本文中,我们提出了一种新颖的多尺度$ k $ -nn(ms- $ k $ -nn),它将未加权的$ k $ -nn估计器从几个$ k \ ge 1 $ aluty推出到$ k = 0 $,从而给出了一个假想的0-NN估计器。我们的方法隐含地计算自适应查询及其邻居点的最佳实用值。从理论上讲,我们证明MS-$ K $ -NN达到了提高的利率,这与某些条件下的现有最佳利率相吻合。

$k$-nearest neighbour ($k$-NN) is one of the simplest and most widely-used methods for supervised classification, that predicts a query's label by taking weighted ratio of observed labels of $k$ objects nearest to the query. The weights and the parameter $k \in \mathbb{N}$ regulate its bias-variance trade-off, and the trade-off implicitly affects the convergence rate of the excess risk for the $k$-NN classifier; several existing studies considered selecting optimal $k$ and weights to obtain faster convergence rate. Whereas $k$-NN with non-negative weights has been developed widely, it was also proved that negative weights are essential for eradicating the bias terms and attaining optimal convergence rate. In this paper, we propose a novel multiscale $k$-NN (MS-$k$-NN), that extrapolates unweighted $k$-NN estimators from several $k \ge 1$ values to $k=0$, thus giving an imaginary 0-NN estimator. Our method implicitly computes optimal real-valued weights that are adaptive to the query and its neighbour points. We theoretically prove that the MS-$k$-NN attains the improved rate, which coincides with the existing optimal rate under some conditions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源