论文标题

机械超材料执行器的自动设计

Automatic Design of Mechanical Metamaterial Actuators

论文作者

Bonfanti, Silvia, Guerra, Roberto, Clos, Francesc Font, Rayneau-Kirkhope, Daniel, Zapperi, Stefano

论文摘要

机械超材料执行器实现了预定的输入 - 输出操作利用了在单个3D打印元件中编码的架构特征,从而消除了组装不同结构组件的需求。尽管该领域取得了迅速的进展,但仍然需要有效的策略来优化各种功能的超材料设计。我们提出了一种用于自动设计机械超材料执行器的计算方法,该方法将增强的蒙特卡洛方法与离散元件模拟相结合。所选机械超材料致动器的3D打印表明机器生成的结构可以达到高效率,超过了人工设计的结构。我们还表明,可以通过训练深层神经网络来设计有效的执行器,从而消除了对冗长的机械模拟的需求。可以将这里设计的基本致动器合并,以生成无数工程应用的任意复杂性的超材料机器。

Mechanical metamaterials actuators achieve pre-determined input--output operations exploiting architectural features encoded within a single 3D printed element, thus removing the need of assembling different structural components. Despite the rapid progress in the field, there is still a need for efficient strategies to optimize metamaterial design for a variety of functions. We present a computational method for the automatic design of mechanical metamaterial actuators that combines a reinforced Monte Carlo method with discrete element simulations. 3D printing of selected mechanical metamaterial actuators shows that the machine-generated structures can reach high efficiency, exceeding human-designed structures. We also show that it is possible to design efficient actuators by training a deep neural network, eliminating the need for lengthy mechanical simulations. The elementary actuators devised here can be combined to produce metamaterial machines of arbitrary complexity for countless engineering applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源