论文标题

上下文意识到主动学习中的图像注释

Context Aware Image Annotation in Active Learning

论文作者

Sun, Yingcheng, Loparo, Kenneth

论文摘要

积极学习的图像注释是劳动密集型的。提出了各种自动和半自动的标签方法来节省标签成本,但是标记实例数量的减少不能保证降低成本,因为对学习者最有价值的查询可能是最困难或最模棱两可的案例,因此对于甲骨文来说最昂贵的案例可以准确地标记。在本文中,我们尝试通过使用Image Metadata在注释过程中提供有关图像的更多线索来解决此问题。我们提出了一个上下文意识到的图像注释框架(CAIAF),该框架使用图像元数据作为相似性度量,将图像聚集到组中进行注释。我们还将有用的元数据信息作为注释接口上每个图像的上下文。实验表明,与传统框架相比,它可以降低CAIAF的注释成本,同时保持高分类性能。

Image annotation for active learning is labor-intensive. Various automatic and semi-automatic labeling methods are proposed to save the labeling cost, but a reduction in the number of labeled instances does not guarantee a reduction in cost because the queries that are most valuable to the learner may be the most difficult or ambiguous cases, and therefore the most expensive for an oracle to label accurately. In this paper, we try to solve this problem by using image metadata to offer the oracle more clues about the image during annotation process. We propose a Context Aware Image Annotation Framework (CAIAF) that uses image metadata as similarity metric to cluster images into groups for annotation. We also present useful metadata information as context for each image on the annotation interface. Experiments show that it reduces that annotation cost with CAIAF compared to the conventional framework, while maintaining a high classification performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源