论文标题
重新访问Boussinesq流体的锁交换问题:精确的浅水解决方案
Lock-exchange problem for Boussinesq fluids revisited: exact shallow-water solution
论文作者
论文摘要
锁交换问题的精确解决方案是在浅水(SW)近似中获得的两个不混溶的液体的浅水(SW)近似值,这是经典大坝破裂问题的两层类似物。使用Riemann不变性的分析表达式的特征方法解决了该问题。所获得的解决方案代表了与高元素数量限制的无关近似值,通常不连续,最多包含三个液压跳跃,这是由于连续SW溶液的多估性或不稳定性引起的。通过将Rankine-Hugoniot条件应用于SW质量和广义动量保护方程来解决水力跳跃。后者包含一个自由参数$α$,该参数定义了每层对界面压力梯度的相对贡献。我们考虑了$α= 0的解决方案,$对应于两层影响界面压力系数相等的界面压力梯度。将该解决方案与经典本杰明的前条件以及循环保护条件的应用所产生的解决方案进行了比较,该解决方案分别对应于$α= -1 $和$α\ rightarrow \ rightarrow \ infty。 SW溶液重现了粘性流体2D数值溶液的所有主要特征。当阵线获得最大的稳定高度时,重力电流的速度与实验和数值结果非常吻合,该高度在$α= \ sqrt {5} -2。$ $我们表明,我们证明了质量的两层SW方程,并且具有广义动量保存可以描述包含在不受外部交易中的液压跳跃的界面波。
An exact solution to the lock-exchange problem, which is a two-layer analogue of the classical dam-break problem, is obtained in the shallow-water (SW) approximation for two immiscible fluids with slightly different densities. The problem is solved by the method of characteristics using analytic expressions for the Riemann invariants. The obtained solution, which represents an inviscid approximation to the high-Reynolds-number limit, is in general discontinuous containing up to three hydraulic jumps which are due to either multivaluedness or instability of the continuous SW solution. Hydraulic jumps are resolved by applying the Rankine-Hugoniot conditions for the SW mass and generalized momentum conservation equations. The latter contains a free parameter $α$ which defines the relative contribution of each layer to the interfacial pressure gradient. We consider a solution for $α=0,$ which corresponds to both layers affecting the interfacial pressure gradient with equal weight coefficients. This solution is compared with the solutions resulting from the application of the classical Benjamin's front condition as well as the circulation conservation condition, which correspond to $α=-1$ and $α\rightarrow\infty,$ respectively. The SW solution reproduces all principal features of 2D numerical solution for viscous fluids. The gravity current speed is found to agree well with experimental and numerical results when the front acquires the largest stable height which occurs at $α=\sqrt{5}-2.$ We show that two-layer SW equations for the mass and generalized momentum conservation can describe interfacial waves containing hydraulic jumps in a self-contained way without external closure conditions.