论文标题

深稳定的多级语义跨模式哈希

Deep Robust Multilevel Semantic Cross-Modal Hashing

论文作者

Song, Ge, Zhao, Jun, Tan, Xiaoyang

论文摘要

基于哈希的跨模式检索最近取得了重大进展。但是,由于内在的模态差异和噪音,将不同模态的数据直接嵌入数据将不可避免地产生错误的代码。我们提出了一种新颖的稳健多级语义散列(RMSH),以进行更准确的跨模式检索。它试图在具有丰富语义的数据之间保留细粒度的相似性,而明确要求不同点之间的距离大于具有强鲁棒性的特定值。为此,我们根据信息编码理论分析给出了该值的有效界限,上述目标体现为边缘自适应三胞胎损失。此外,我们通过融合多个哈希码来探索很少见的语义,从而减轻了相似性信息的稀疏问题,从而引入了伪代码。三个基准测试的实验显示了派生界限的有效性,我们的方法实现了最新的性能。

Hashing based cross-modal retrieval has recently made significant progress. But straightforward embedding data from different modalities into a joint Hamming space will inevitably produce false codes due to the intrinsic modality discrepancy and noises. We present a novel Robust Multilevel Semantic Hashing (RMSH) for more accurate cross-modal retrieval. It seeks to preserve fine-grained similarity among data with rich semantics, while explicitly require distances between dissimilar points to be larger than a specific value for strong robustness. For this, we give an effective bound of this value based on the information coding-theoretic analysis, and the above goals are embodied into a margin-adaptive triplet loss. Furthermore, we introduce pseudo-codes via fusing multiple hash codes to explore seldom-seen semantics, alleviating the sparsity problem of similarity information. Experiments on three benchmarks show the validity of the derived bounds, and our method achieves state-of-the-art performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源