论文标题
Hermitian-Yang-Mills方法是猜想Griffiths在充足矢量束的积极性上
Hermitian-Yang-Mills approach to the conjecture of Griffiths on the positivity of ample vector bundles
论文作者
论文摘要
考虑到一个任意级别的矢量束在投影歧管上具有足够的决定符线束,我们提出了一个新的椭圆形系统,该系统具有用于曲率张量的Hermitian-Yang-Mills类型的微分方程。该系统的设计是为了使解决方案从griffiths的意义上甚至是双中性含义的意义上为冬宫的指标提供积极的曲率。结果,如果每个足够的矢量束都可以获得存在结果,则将解决有关矢量捆绑包和阳性之间的等效性的格里菲斯(Griffiths)。
Given a vector bundle of arbitrary rank with ample determinant line bundle on a projective manifold, we propose a new elliptic system of differential equations of Hermitian-Yang-Mills type for the curvature tensor. The system is designed so that solutions provide Hermitian metrics with positive curvature in the sense of Griffiths-and even in the dual Nakano sense. As a consequence, if an existence result could be obtained for every ample vector bundle, the Griffiths conjecture on the equivalence between ampleness and positivity of vector bundles would be settled.