论文标题
椭圆形分布中稳健的半摩托效率估计器
Robust Semiparametric Efficient Estimators in Elliptical Distributions
论文作者
论文摘要
协方差矩阵在统计,信号处理和机器学习应用中起着重要作用。本文重点介绍了\ textit {semiparametric}协方差/散点矩阵估计问题。椭圆形分布类别可以看作是一个半参数模型,其中有限维二维矢量由位置矢量和(矢量化的)协方差/散点矩阵给出,而密度发生器代表无限少二维的滋扰功能。然后,这项工作的主要目的是提供有限维参数矢量的可能估计器,能够调和\ textit {ronustness}和(semiparametric)\ textit {feffition {效率}的两个二分法概念。 Hallin,Oja和Parchaveine最近提出了一个满足这些要求的$ r $估计器,以利用LE CAM的\ textit {一步有效估计器}和\ textIt {基于等级{基于等级的统计数据}来利用LE CAM的理论,以实现实用值的椭圆数据。在本文中,我们首先回想起了这种实价$ r $估计器的推导的基础,然后提出了其扩展到复杂值数据的扩展。此外,通过数值模拟,在有限样本制度中研究了其对异常值的估计性能和鲁棒性。
Covariance matrices play a major role in statistics, signal processing and machine learning applications. This paper focuses on the \textit{semiparametric} covariance/scatter matrix estimation problem in elliptical distributions. The class of elliptical distributions can be seen as a semiparametric model where the finite-dimensional vector of interest is given by the location vector and by the (vectorized) covariance/scatter matrix, while the density generator represents an infinite-dimensional nuisance function. The main aim of this work is then to provide possible estimators of the finite-dimensional parameter vector able to reconcile the two dichotomic concepts of \textit{robustness} and (semiparametric) \textit{efficiency}. An $R$-estimator satisfying these requirements has been recently proposed by Hallin, Oja and Paindaveine for real-valued elliptical data by exploiting the Le Cam's theory of \textit{one-step efficient estimators} and the \textit{rank-based statistics}. In this paper, we firstly recall the building blocks underlying the derivation of such real-valued $R$-estimator, then its extension to complex-valued data is proposed. Moreover, through numerical simulations, its estimation performance and robustness to outliers are investigated in a finite-sample regime.