论文标题

绝热量子热机的几何特性

Geometric properties of adiabatic quantum thermal machines

论文作者

Bhandari, Bibek, Alonso, Pablo Terrén, Taddei, Fabio, von Oppen, Felix, Fazio, Rosario, Arrachea, Liliana

论文摘要

我们提出了一种一般的统一方法,用于研究量子热机,包括热发动机和冰箱,在周期性绝热驾驶下运行,并与保持在不同温度下的热储层接触。我们表明,许多表征这种操作模式和机器性能的可观察物具有几何性质。热量转换机制和能量的耗散可以分别通过在时间依赖性参数中定义的热几何张量的反对称和对称成分来描述,以包括温度偏差。抗对称分量可以识别为浆果曲率,而对称分量定义了歧管的度量。我们表明,绝热热机的运行及其效率与这些几何方面密切相关。我们通过讨论两种特定情况来说明这些思想:一个缓慢驱动的Qubit不对称地与在不同温度下保持的两个玻感水库耦合,以及由旋转磁场驱动的量子点,并与具有不同极化的电子储层强烈耦合。这两个示例已经可以进行实验验证。

We present a general unified approach for the study of quantum thermal machines, including both heat engines and refrigerators, operating under periodic adiabatic driving and in contact with thermal reservoirs kept at different temperatures. We show that many observables characterizing this operating mode and the performance of the machine are of geometric nature. Heat-work conversion mechanisms and dissipation of energy can be described, respectively, by the antisymmetric and symmetric components of a thermal geometric tensor defined in the space of time-dependent parameters generalized to include the temperature bias. The antisymmetric component can be identified as a Berry curvature, while the symmetric component defines the metric of the manifold. We show that the operation of adiabatic thermal machines, and consequently also their efficiency, are intimately related to these geometric aspects. We illustrate these ideas by discussing two specific cases: a slowly driven qubit asymmetrically coupled to two bosonic reservoirs kept at different temperatures, and a quantum dot driven by a rotating magnetic field and strongly coupled to electron reservoirs with different polarizations. Both examples are already amenable for an experimental verification.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源