论文标题

$ b(x,y)z^n-a(x,y)$的飞机上的dvr

Planes of the form $b(X,Y)Z^n-a(X,Y)$ over a DVR

论文作者

Das, Prosenjit, Dutta, Amartya K.

论文摘要

在本文中,我们将D. Wright的表达定理扩展到了离散估值环的情况。我们将证明,如果$(r,t)$是一个离散的估值戒指,$ n \ ge 2 $是一个整数,则不可能由残基字段$ r/tr $的特征和$ g \ in R [x,y,z] $在$ g = b(x,y)z^n -y(x,x,y)$ g py y [x,y,z]中的特征上,y y y y y y y y y y y y y y y x y y [x,y)$ r [代数为两个变量,然后$ g $和$ z $形成$ r [x,y,z] $的变量。我们还将证明该结果始于包含$ \ mathbb {q} $的任何Noetherian域。

In this paper we extend an epimorphism theorem of D. Wright to the case of discrete valuation rings. We will show that if $(R, t)$ is a discrete valuation ring, $n \ge 2$ is an integer not divisible by the characteristic of the residue field $R/tR$, and $g \in R[X, Y, Z]$ is a polynomial of the form $g = b(X,Y)Z^n - a(X,Y)$ such that $R[X, Y, Z]/(g)$ is a polynomial algebra in two variables, then $g$ and $Z$ form a pair of variables in $R[X, Y, Z]$. We will also show that the result holds over any Noetherian domain containing $\mathbb{Q}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源