论文标题
$ c^{1 + \ varepsilon} $偏斜产品的Möbius偏见
Möbius disjointness for $C^{1 + \varepsilon}$ skew products
论文作者
论文摘要
我们表明,对于$ \ varepsilon> 0 $,每一个$ c^{1 + \ varepsilon} $偏斜产品在$ \ mathbb {t}^2 $上旋转,$ \ mathbb {t}^1 $的旋转,都可以满足萨纳克的猜想。这是Kulaga-przymus-Lemańczyk,Huang-Wang-Ye和Kanigowski-Lemańczyk-Radziwill的早期结果的改善。
We show that for $\varepsilon > 0$, every $C^{1 + \varepsilon}$ skew product on $\mathbb{T}^2$ over a rotation of $\mathbb{T}^1$ satisfies Sarnak's conjecture. This is an improvement of earlier results of Kulaga-Przymus-Lemańczyk, Huang-Wang-Ye, and Kanigowski-Lemańczyk-Radziwill.