论文标题
用于基于MRAM的深度信念网络的过程变化分析的模块化模拟框架
Modular Simulation Framework for Process Variation Analysis of MRAM-based Deep Belief Networks
论文作者
论文摘要
基于磁性随机记忆(MRAM)的P-BIT神经形态计算设备正在引起人们的兴趣越来越多,以此作为紧凑,有效地实现限制性Boltzmann机器(RBMS)的机器学习操作的一种手段。当嵌入RBM电阻横梁阵列中时,基于P-PIT的神经元实现了可调的乙状结激活函数。由于激活的随机性取决于MRAM设备的能屏障,因此必须评估过程变化对乙状结肠功能的电压依赖性行为的影响。其他有影响力的绩效因素是由于需要模拟环境来促进设备和网络参数的多目标优化的能源障碍而产生的。在此,开发了可运输的Python脚本来分析机器学习应用程序准确性的设备尺寸变化下的输出变化。使用MNIST数据集使用RBM电路进行评估,揭示了根据所得能量与准确性权衡折衷的设备制造变化的影响和限制,并且可通过创意共享许可证可获得所得的仿真框架。
Magnetic Random-Access Memory (MRAM) based p-bit neuromorphic computing devices are garnering increasing interest as a means to compactly and efficiently realize machine learning operations in Restricted Boltzmann Machines (RBMs). When embedded within an RBM resistive crossbar array, the p-bit based neuron realizes a tunable sigmoidal activation function. Since the stochasticity of activation is dependent on the energy barrier of the MRAM device, it is essential to assess the impact of process variation on the voltage-dependent behavior of the sigmoid function. Other influential performance factors arise from varying energy barriers on power consumption requiring a simulation environment to facilitate the multi-objective optimization of device and network parameters. Herein, transportable Python scripts are developed to analyze the output variation under changes in device dimensions on the accuracy of machine learning applications. Evaluation with RBM circuits using the MNIST dataset reveal impacts and limits for processing variation of device fabrication in terms of the resulting energy vs. accuracy tradeoffs, and the resulting simulation framework is available via a Creative Commons license.