论文标题
加密货币:保护隐私成果网络推断
CryptoSPN: Privacy-preserving Sum-Product Network Inference
论文作者
论文摘要
AI算法和机器学习(ML)技术尤其对个人的生活越来越重要,但引起了欧洲GDPR的一系列隐私问题。使用加密技术,可以以隐私保护方式远程对敏感客户数据进行推理任务:服务器对输入数据和模型预测一无所知,而客户端对ML模型一无所知(通常被认为是知识属性,并且可能包含敏感数据的痕迹)。尽管这种保护隐私的解决方案相对有效,但它们主要针对神经网络,可以降低预测精度,并且通常揭示了网络的拓扑结构。此外,ML专家不容易访问现有的解决方案,因为原型实现并不完善地整合到ML框架中,并且需要广泛的加密知识。 在本文中,我们介绍了加密货币,这是一个保留汇总网络(SPNS)的隐私推理的框架。 SPNS是一种可处理的概率图形模型,允许在线性时间内进行一系列精确的推理查询。具体而言,我们展示了如何通过安全的多方计算(SMPC)有效地执行SPN推理,而无需精确降低,同时隐藏了敏感的客户端和培训信息,并具有可证明的安全保证。在基础旁边,CryptoSPN包含工具,可以轻松地将现有SPN转换为隐私保护可执行文件。我们的经验结果表明,中型SPN的秒数在秒的顺序上实现了高效和准确的推断。
AI algorithms, and machine learning (ML) techniques in particular, are increasingly important to individuals' lives, but have caused a range of privacy concerns addressed by, e.g., the European GDPR. Using cryptographic techniques, it is possible to perform inference tasks remotely on sensitive client data in a privacy-preserving way: the server learns nothing about the input data and the model predictions, while the client learns nothing about the ML model (which is often considered intellectual property and might contain traces of sensitive data). While such privacy-preserving solutions are relatively efficient, they are mostly targeted at neural networks, can degrade the predictive accuracy, and usually reveal the network's topology. Furthermore, existing solutions are not readily accessible to ML experts, as prototype implementations are not well-integrated into ML frameworks and require extensive cryptographic knowledge. In this paper, we present CryptoSPN, a framework for privacy-preserving inference of sum-product networks (SPNs). SPNs are a tractable probabilistic graphical model that allows a range of exact inference queries in linear time. Specifically, we show how to efficiently perform SPN inference via secure multi-party computation (SMPC) without accuracy degradation while hiding sensitive client and training information with provable security guarantees. Next to foundations, CryptoSPN encompasses tools to easily transform existing SPNs into privacy-preserving executables. Our empirical results demonstrate that CryptoSPN achieves highly efficient and accurate inference in the order of seconds for medium-sized SPNs.