论文标题
通过正向偏置光调节器读取超导纳米线单光子检测器
Readout of Superconducting Nanowire Single Photon Detectors through Forward Biased Optical Modulators
论文作者
论文摘要
低速(0.1-4 K)和室温环境之间的可扩展的高速数据传输在广泛的领域中发挥了作用,包括量子计算,超导电子,单光子成像和基于空间的通信。克服常规电线读数局限性的一种有希望的方法是使用光纤通信。光纤的热负荷比传统的电线低100-1,000倍,放宽了热锚定的要求,并且对电磁干扰也免疫,这允许将敏感信号与稳健性提高到噪声和串扰的稳健性。最重要的是,光纤允许通过相同的物理光纤(波长多路复用,WDM)携带多个信号来实现非常高的带宽密度(在TBPS/mm $^2 $范围内)。在这里,我们首次演示了直接与CMOS光子调制器直接耦合的超导纳米电视单光子检测器(SNSPD)的光学读数,而无需接口设备。通过在3.6 K的温度下操作调制器,我们达到了很高的调制效率(1000-10,000 pm/v),低输入阻抗为500 $ω$,低功率耗散为40 $μ$ w。这使我们能够获得SNSPD产生的低,毫伏级信号的光学调制。光学通信已成为现代室温高性能系统中首选的I/O解决方案,这项工作证明了其适合可扩展低温读数的性能,这可以帮助实现超导技术的全部潜力。
Scalable, high speed data transfer between cryogenic (0.1-4 K) and room temperature environments is instrumental in a broad range of fields including quantum computing, superconducting electronics, single photon imaging and space-based communications. A promising approach to overcome the limitations of conventional wire-based readout is the use of optical fiber communication. Optical fiber presents a 100-1,000x lower heat load than conventional electrical wiring, relaxing the requirements for thermal anchoring, and is also immune to electromagnetic interference, which allows routing of sensitive signals with improved robustness to noise and crosstalk. Most importantly, optical fibers allow for very high bandwidth densities (in the Tbps/mm$^2$ range) by carrying multiple signals through the same physical fiber (Wavelength Division Multiplexing, WDM). Here, we demonstrate for the first time optical readout of a superconducting nanowire single-photon detector (SNSPD) directly coupled to a CMOS photonic modulator, without the need for an interfacing device. By operating the modulator in the forward bias regime at a temperature of 3.6 K, we achieve very high modulation efficiency (1000-10,000 pm/V) and a low input impedance of 500 $Ω$ with a low power dissipation of 40 $μ$W. This allows us to obtain optical modulation with the low, millivolt-level signal generated by the SNSPD. Optical communication is becoming the preferred I/O solution in modern, room temperature high performance systems, and this work demonstrates its suitability for scalable cryogenic readout, which could help achieve the full potential of superconducting technologies.