论文标题
一种新的1.375-Approximation算法,用于通过换位
A new 1.375-approximation algorithm for Sorting By Transpositions
论文作者
论文摘要
在基因组重排中,突变事件转置在一个染色体中交换了两个基因的相邻块。换位距离问题(TDP)旨在找到将一个染色体转化为另一种染色体所需的最小换位数,均表示为排列。 TDP可以简化为通过换位(SBT)进行分类的问题。 SBT是$ \ Mathcal {np} $ - 硬,并且Elias and Hartman提出了最佳的近似算法,其比例为$ 1.375 $。他们的算法采用简化,这是一种用于将输入排列$π$转换为简单排列$ \hatπ$的技术,大概更容易处理。置换$ \hatπ$是通过将新符号插入$π$以$ \hatπ$上的换距距离的下限来获得的。简化可确保保持下限,而不是换位距离。 在本文中,我们首先表明,Elias和Hartman(EH算法)的算法可能需要额外的换位,而高于$ 1.375 $的近似值,具体取决于如何简化输入排列。接下来,使用代数方法,我们为转置距离提出了一个新的上限,并提出了一种新的$ 1.375 $ - APPRXIMATION算法,以简化SBT跳过并确保所有$ S_N $的近似值$ 1.375 $。 我们实施了算法和EH。关于实施EH算法,需要解决两个问题。我们测试了这两种算法,用于所有尺寸$ n $,$ 2 \ leq n \ leq 12 $的排列。结果表明,EH算法的近似值超过了$ 1.375 $的近似值,其尺寸大于$ 7 $。最后,我们调查了两种实现的性能在最大长度$ 500 $的较长排列上的性能。
In genome rearrangements, the mutational event transposition swaps two adjacent blocks of genes in one chromosome. The Transposition Distance Problem (TDP) aims to find the minimum number of transpositions required to transform one chromosome into another, both represented as permutations. The TDP can be reduced to the problem of Sorting by Transpositions (SBT). SBT is $\mathcal{NP}$-hard and the best approximation algorithm with a $1.375$ ratio was proposed by Elias and Hartman. Their algorithm employs simplification, a technique used to transform an input permutation $π$ into a simple permutation $\hatπ$, presumably easier to handle with. The permutation $\hatπ$ is obtained by inserting new symbols into $π$ in a way that the lower bound of the transposition distance of $π$ is kept on $\hatπ$. The simplification is guaranteed to keep the lower bound, not the transposition distance. In this paper, we first show that the algorithm of Elias and Hartman (EH algorithm) may require one extra transposition above the approximation ratio of $1.375$, depending on how the input permutation is simplified. Next, using an algebraic approach, we propose a new upper bound for the transposition distance and a new $1.375$-approximation algorithm to solve SBT skipping simplification and ensuring the approximation ratio of $1.375$ for all $S_n$. We implemented our algorithm and EH's. Regarding the implementation of the EH algorithm, two issues needed to be fixed. We tested both algorithms against all permutations of size $n$, $2\leq n \leq 12$. The results show that the EH algorithm exceeds the approximation ratio of $1.375$ for permutations with a size greater than $7$. Finally, we investigate the performance of both implementations on longer permutations of maximum length $500$.