论文标题

intweetive文本摘要

Intweetive Text Summarization

论文作者

Cossu, Jean Valère, Torres-Moreno, Juan-Manuel, SanJuan, Eric, El-Bèze, Marc

论文摘要

各种社交媒体生成的用户生成的内容量使分析师可以在与其业务相关的几个主题上进行广泛的对话视图。然而,与此信息保持最新状态是不可行的。然后,自动摘要提供了一种有趣的均值,以消化动力学和质量内容物。在本文中,我们解决了几乎没有探索的推文摘要问题。我们建议自动生成有关公共人物电子指控的微博对话的摘要。这些摘要是使用钥匙单词查询或示例推文生成的,并提供了整个微博网络的重点视图。由于在这一点上缺乏最先进的情况,因此,根据实验评估过程,我们对多语言CLEF REPLAB主题检测数据集进行了进行并评估我们的实验。

The amount of user generated contents from various social medias allows analyst to handle a wide view of conversations on several topics related to their business. Nevertheless keeping up-to-date with this amount of information is not humanly feasible. Automatic Summarization then provides an interesting mean to digest the dynamics and the mass volume of contents. In this paper, we address the issue of tweets summarization which remains scarcely explored. We propose to automatically generated summaries of Micro-Blogs conversations dealing with public figures E-Reputation. These summaries are generated using key-word queries or sample tweet and offer a focused view of the whole Micro-Blog network. Since state-of-the-art is lacking on this point we conduct and evaluate our experiments over the multilingual CLEF RepLab Topic-Detection dataset according to an experimental evaluation process.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源