论文标题

在准线性不确定问题中,最小化器的独特性和符号特性

Uniqueness and sign properties of minimizers in a quasilinear indefinite problem

论文作者

Kaufmann, Uriel, Quoirin, Humberto Ramos, Umezu, Kenichiro

论文摘要

令$ 1 <q <q <p $和c(\overlineΩ)$的$ a \是签名,其中$ω$是$ \ mathbb {r}^{n} $的有限且平滑的域。我们表明功能\ [i_ {q}(u):= \int_Ω\ left(\ frac {1} {p} {p} | \ nabla u |^{p} - \ frac {1} {q} {q} {q^} a(x) $ w_ {0}^{1,p}(ω)$或$ w^{1,p}(ω)$)。此外,我们证明$ u_ {q} $是关联的欧拉 - 拉格朗日方程的唯一可能的\ textit {pastic}解决方案,这表明该方程最多具有一个阳性解决方案。此外,我们表明,如果$ q $足够接近$ p $,则$ u_ {q} $是正的,这也可以保证$ i_ {q} $的最小化器不会更改符号。这些结果中有几个是新的,即使对于$ p = 2 $也是如此。

Let $1<q<p$ and $a\in C(\overlineΩ)$ be sign-changing, where $Ω$ is a bounded and smooth domain of $\mathbb{R}^{N}$. We show that the functional \[ I_{q}(u):=\int_Ω\left( \frac{1}{p}|\nabla u|^{p}-\frac{1}{q}a(x)|u|^{q}\right) , \] has exactly one nonnegative minimizer $U_{q}$ (in $W_{0}^{1,p}(Ω)$ or $W^{1,p}(Ω)$). In addition, we prove that $U_{q}$ is the only possible \textit{positive} solution of the associated Euler-Lagrange equation, which shows that this equation has at most one positive solution. Furthermore, we show that if $q$ is close enough to $p$ then $U_{q}$ is positive, which also guarantees that minimizers of $I_{q}$ do not change sign. Several of these results are new even for $p=2$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源