论文标题

部分可观测时空混沌系统的无模型预测

Learning Discrete Distributions by Dequantization

论文作者

Hoogeboom, Emiel, Cohen, Taco S., Tomczak, Jakub M.

论文摘要

媒体通常是数字存储的,因此是离散的。深度学习中的许多成功的深层分布模型都学习密度,即连续随机变量的分布。对离散数据的幼稚优化会导致任意较高的可能性,相反,它已成为添加噪声到数据点的标准实践。在本文中,我们提出了一个去除化的一般框架,该框架将现有方法捕获为特殊情况。我们得出了两个新的取消化目标:重要性加权(IW)去除和rényi取消化。此外,我们引入了自回归去量化(ARD),以进行更灵活的去量化分布。从经验上讲,我们发现IW和Rényi的取消化大大提高了统一去除分布的性能。 ARD在CIFAR10上实现了每个维度为3.06位的负模样,据我们所知,这是在不需要自动回归倒置进行抽样的分布模型之间的最新。

Media is generally stored digitally and is therefore discrete. Many successful deep distribution models in deep learning learn a density, i.e., the distribution of a continuous random variable. Naïve optimization on discrete data leads to arbitrarily high likelihoods, and instead, it has become standard practice to add noise to datapoints. In this paper, we present a general framework for dequantization that captures existing methods as a special case. We derive two new dequantization objectives: importance-weighted (iw) dequantization and Rényi dequantization. In addition, we introduce autoregressive dequantization (ARD) for more flexible dequantization distributions. Empirically we find that iw and Rényi dequantization considerably improve performance for uniform dequantization distributions. ARD achieves a negative log-likelihood of 3.06 bits per dimension on CIFAR10, which to the best of our knowledge is state-of-the-art among distribution models that do not require autoregressive inverses for sampling.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源