论文标题

走向类似人类的开放域聊天机器人

Towards a Human-like Open-Domain Chatbot

论文作者

Adiwardana, Daniel, Luong, Minh-Thang, So, David R., Hall, Jamie, Fiedel, Noah, Thoppilan, Romal, Yang, Zi, Kulshreshtha, Apoorv, Nemade, Gaurav, Lu, Yifeng, Le, Quoc V.

论文摘要

我们介绍了Meena,这是一种多转弯域聊天机器人,经过培训的端到端,该数据已挖掘并从公共领域社交媒体对话中过滤。这个2.6b参数神经网络经过训练,以最大程度地减少接下来的令牌的困惑。我们还提出了一个称为“敏感性和特异性平均值”(SSA)的人类评估指标,该指标捕获了类似人类的多转交谈的关键要素。我们的实验显示了困惑性与SSA之间的密切相关性。 SSA的最佳困惑端到端训练的MEENA得分很高(多转变评估的72%)表明,如果我们能够更好地优化困惑,则有可能达到86%的人类SSA。此外,MEENA的完整版本(具有过滤机制和调谐解码)得分为79%,绝对SSA比我们评估的现有聊天机器人高23%。

We present Meena, a multi-turn open-domain chatbot trained end-to-end on data mined and filtered from public domain social media conversations. This 2.6B parameter neural network is simply trained to minimize perplexity of the next token. We also propose a human evaluation metric called Sensibleness and Specificity Average (SSA), which captures key elements of a human-like multi-turn conversation. Our experiments show strong correlation between perplexity and SSA. The fact that the best perplexity end-to-end trained Meena scores high on SSA (72% on multi-turn evaluation) suggests that a human-level SSA of 86% is potentially within reach if we can better optimize perplexity. Additionally, the full version of Meena (with a filtering mechanism and tuned decoding) scores 79% SSA, 23% higher in absolute SSA than the existing chatbots we evaluated.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源