论文标题
用弗莱明(Fleming)的预测推断 - 依赖于Viot驱动的Dirichlet过程
Predictive inference with Fleming--Viot-driven dependent Dirichlet processes
论文作者
论文摘要
我们考虑使用由Fleming-Viot扩散驱动的一类时间依赖的Dirichlet过程的预测性推论,Viot扩散在贝叶斯非参数中具有天然轴承,并为分析后分析的随机概率指标提供了随机的随机概率指标。将隐含的统计模型制定为隐藏的马尔可夫模型,我们充分描述了这些弗莱明(Vleming)诱导的预测分布 - Viot驱动的依赖性Dirichlet过程,其中一系列观察结果在某个时间收集的一系列观察结果,鉴于前几次收集的另一组抽奖。这被确定为pólyaurns的混合物,因此,观察值可以是基线分布中的值,也可以是与通常的pòlyaurn同时收集的先前抽奖的副本,也可以从以前收集的数据的随机子集中取样。我们表征了选择此类子集并讨论渐近方案的混合物的时间相关权重。我们通过带有传送带的中国餐厅过程隐喻来描述诱导的分区,从而通过从基线分布或传送带上提供的时变要约中挑选出菜肴,从而坐在占用桌子上的新客户打开了新桌子。我们为观测值和分区的精确和近似后采样制定了明确的算法,并说明了我们关于合成和真实数据的预测问题的结果。
We consider predictive inference using a class of temporally dependent Dirichlet processes driven by Fleming--Viot diffusions, which have a natural bearing in Bayesian nonparametrics and lend the resulting family of random probability measures to analytical posterior analysis. Formulating the implied statistical model as a hidden Markov model, we fully describe the predictive distribution induced by these Fleming--Viot-driven dependent Dirichlet processes, for a sequence of observations collected at a certain time given another set of draws collected at several previous times. This is identified as a mixture of Pólya urns, whereby the observations can be values from the baseline distribution or copies of previous draws collected at the same time as in the usual Pòlya urn, or can be sampled from a random subset of the data collected at previous times. We characterise the time-dependent weights of the mixture which select such subsets and discuss the asymptotic regimes. We describe the induced partition by means of a Chinese restaurant process metaphor with a conveyor belt, whereby new customers who do not sit at an occupied table open a new table by picking a dish either from the baseline distribution or from a time-varying offer available on the conveyor belt. We lay out explicit algorithms for exact and approximate posterior sampling of both observations and partitions, and illustrate our results on predictive problems with synthetic and real data.