论文标题

用于审查流绩效数据的视觉分析框架

A Visual Analytics Framework for Reviewing Streaming Performance Data

论文作者

Kesavan, Suraj P., Fujiwara, Takanori, Li, Jianping Kelvin, Ross, Caitlin, Mubarak, Misbah, Carothers, Christopher D., Ross, Robert B., Ma, Kwan-Liu

论文摘要

由于将离线算法应用于大量性能日志数据的计算成本,因此了解和调整极端平行计算系统的性能需要一种流方式。分析大型流数据是具有挑战性的,因为接收数据的速度和有限的时间来理解数据,因此很难在不缺少重要更改或模式的情况下充分检查数据。为了支持流数据分析,我们引入了一个视觉分析框架,该框架包括三个模块:数据管理,分析和交互式可视化。数据管理模块使用流数据处理技术从受监视系统中收集各种计算和通信性能指标,并将数据馈送到其他两个模块。分析模块会自动确定所需延迟的重要变化和模式。特别是,我们介绍了一组在线和渐进分析方法,不仅可以控制计算成本,而且还可以帮助分析师更好地遵循分析结果的关键方面。最后,交互式可视化模块为分析师提供了连续捕获的性能数据中的变化和模式的连贯视图。通过对平行离散事件模拟的性能分析的多方面案例研究,我们证明了框架识别瓶颈和定位异常值的有效性。

Understanding and tuning the performance of extreme-scale parallel computing systems demands a streaming approach due to the computational cost of applying offline algorithms to vast amounts of performance log data. Analyzing large streaming data is challenging because the rate of receiving data and limited time to comprehend data make it difficult for the analysts to sufficiently examine the data without missing important changes or patterns. To support streaming data analysis, we introduce a visual analytic framework comprising of three modules: data management, analysis, and interactive visualization. The data management module collects various computing and communication performance metrics from the monitored system using streaming data processing techniques and feeds the data to the other two modules. The analysis module automatically identifies important changes and patterns at the required latency. In particular, we introduce a set of online and progressive analysis methods for not only controlling the computational costs but also helping analysts better follow the critical aspects of the analysis results. Finally, the interactive visualization module provides the analysts with a coherent view of the changes and patterns in the continuously captured performance data. Through a multi-faceted case study on performance analysis of parallel discrete-event simulation, we demonstrate the effectiveness of our framework for identifying bottlenecks and locating outliers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源