论文标题

Poiseuille型流动的稳定性对于不可压缩的聚合物流体的MHD模型

Stability of Poiseuille-type flows for an MHD model of an incompressible polymeric fluid

论文作者

Blokhin, Alexander, Tkachev, Dmitry

论文摘要

我们研究了一个新的流变学模型,描述了在温度下降和传导电流的情况下,在外部均匀磁场中,在外部均匀磁场中的熔体和溶液的流量和解决方案。我们发现,在无限平面通道中围绕Poiseuille型流量的初始边界值问题线性化引起的线性问题光谱的渐近表示。对于这种Poiseuille型流,我们还找到了线性Lyapunov稳定性的参数域。

We study a new rheological model describing flows of melts and solutions of incompressible viscoelastic polymeric media in an external uniform magnetic field in the presence of a temperature drop and a conduction current. We find an asymptotic representation of the spectrum of the linear problem resulting from the linearization of the initial boundary value problem in an infinite plane channel about a Poiseuille-type flow. For this Poiseuille-type flow we also find the parameter domain of linear Lyapunov's stability.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源