论文标题
Poiseuille型流动的稳定性对于不可压缩的聚合物流体的MHD模型
Stability of Poiseuille-type flows for an MHD model of an incompressible polymeric fluid
论文作者
论文摘要
我们研究了一个新的流变学模型,描述了在温度下降和传导电流的情况下,在外部均匀磁场中,在外部均匀磁场中的熔体和溶液的流量和解决方案。我们发现,在无限平面通道中围绕Poiseuille型流量的初始边界值问题线性化引起的线性问题光谱的渐近表示。对于这种Poiseuille型流,我们还找到了线性Lyapunov稳定性的参数域。
We study a new rheological model describing flows of melts and solutions of incompressible viscoelastic polymeric media in an external uniform magnetic field in the presence of a temperature drop and a conduction current. We find an asymptotic representation of the spectrum of the linear problem resulting from the linearization of the initial boundary value problem in an infinite plane channel about a Poiseuille-type flow. For this Poiseuille-type flow we also find the parameter domain of linear Lyapunov's stability.