论文标题

对下一代半导体检测器的子GEV暗物质的预测敏感性

Projected sensitivity to sub-GeV dark matter of next-generation semiconductor detectors

论文作者

Andersson, Erik, Bökmark, Alex, Catena, Riccardo, Emken, Timon, Moberg, Henrik Klein, Åstrand, Emil

论文摘要

我们使用锗和硅半导体靶标在未来直接检测实验的亚GEV质量范围内计算对暗物质(DM)颗粒的敏感性。我们在深色光子模型中使用似然比作为测试统计量,蒙特卡洛模拟以及我们从最近的实验数据中提取的背景模型进行了DM电子相互作用的计算。我们以DM - 电子散射横截面值的方式介绍了我们的结果,仅拒绝背景假设,而支持背景和DM信号假设,其统计学意义为$ \ MATHCAL {Z} $,对应于3或5个标准偏差。我们还测试了我们结论的稳定性,该结论是在银河系中局部空间和速度分布的天体物理参数变化下的稳定性。在最佳情况下,当暴露于$ 50 $ kg的高压锗探测器和CCD硅探测器,暴露于$ 1 $ kg的年度且黑暗电流的价格为$ 1 \ times10^{ - 7} $ cutts/day/day conterage cross a Smill of Cross $ coptaible $ n $ n $ $ n $ $ n $ ($ \ MATHCAL {Z} = 5 $)的接触交互作用约为$ 8 \ times10^{ - 42} $ cm $^2 $($ 1 \ 1 \ 1 \ 1 \ 1 \ times10^{ - 41} $ cm $^2 $)用于交互,$ 4 \ times10^{ - 41} { - 41} $ cm $ cm $ cm $^2 $^$ 7 \ $ 7 \ $ 7 \ $ \ c.互动。我们的敏感性研究扩展并完善了以前的工作,从背景模型,统计方法和基础天体物理不确定性的处理方面进行了研究。

We compute the projected sensitivity to dark matter (DM) particles in the sub-GeV mass range of future direct detection experiments using germanium and silicon semiconductor targets. We perform this calculation within the dark photon model for DM-electron interactions using the likelihood ratio as a test statistic, Monte Carlo simulations, and background models that we extract from recent experimental data. We present our results in terms of DM-electron scattering cross section values required to reject the background only hypothesis in favour of the background plus DM signal hypothesis with a statistical significance, $\mathcal{Z}$, corresponding to 3 or 5 standard deviations. We also test the stability of our conclusions under changes in the astrophysical parameters governing the local space and velocity distribution of DM in the Milky Way. In the best-case scenario, when a high-voltage germanium detector with an exposure of $50$ kg-year and a CCD silicon detector with an exposure of $1$ kg-year and a dark current rate of $1\times10^{-7}$ counts/pixel/day have simultaneously reported a DM signal, we find that the smallest cross section value compatible with $\mathcal{Z}=3$ ($\mathcal{Z}=5$) is about $8\times10^{-42}$ cm$^2$ ($1\times10^{-41}$ cm$^2$) for contact interactions, and $4\times10^{-41}$ cm$^2$ ($7\times10^{-41}$ cm$^2$) for long-range interactions. Our sensitivity study extends and refine previous works in terms of background models, statistical methods, and treatment of the underlying astrophysical uncertainties.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源