论文标题

MT-bioner:使用深双向变压器的生物医学命名实体识别的多任务学习

MT-BioNER: Multi-task Learning for Biomedical Named Entity Recognition using Deep Bidirectional Transformers

论文作者

Khan, Muhammad Raza, Ziyadi, Morteza, AbdelHady, Mohamed

论文摘要

Cortana,Alexa和Siri等会话代理人通过添加新领域不断致力于提高其功能。新域的支持包括用于域分类,意图分类和插槽标记的许多NLU组件的设计和开发(包括命名实体识别)。每个组件仅在对大量标记的数据进行训练时才能表现良好。其次,将这些组件部署在有限的内存设备上,该设备需要一些模型压缩。第三,对于某些域(例如健康领域),很难找到涵盖所有必需插槽类型的单个培训数据集。为了克服这些提到的问题,我们提出了一个基于多任务变压器的神经体系结构,用于插槽标记。我们考虑使用涵盖不同插槽类型的多个数据集对插槽标记器进行培训,作为多任务学习问题。关于生物医学领域的实验结果表明,所提出的方法在不同基准的生物医学数据集上以(时间和记忆)效率和有效性在不同基准的生物医学数据集上标记了先前的最新系统。对话代理可以使用输出插槽标签器来更好地识别输入话语中的实体。

Conversational agents such as Cortana, Alexa and Siri are continuously working on increasing their capabilities by adding new domains. The support of a new domain includes the design and development of a number of NLU components for domain classification, intents classification and slots tagging (including named entity recognition). Each component only performs well when trained on a large amount of labeled data. Second, these components are deployed on limited-memory devices which requires some model compression. Third, for some domains such as the health domain, it is hard to find a single training data set that covers all the required slot types. To overcome these mentioned problems, we present a multi-task transformer-based neural architecture for slot tagging. We consider the training of a slot tagger using multiple data sets covering different slot types as a multi-task learning problem. The experimental results on the biomedical domain have shown that the proposed approach outperforms the previous state-of-the-art systems for slot tagging on the different benchmark biomedical datasets in terms of (time and memory) efficiency and effectiveness. The output slot tagger can be used by the conversational agent to better identify entities in the input utterances.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源