论文标题
智力 - Zumino-在Kähler潜力的空间中,就Hermitian而言 - Yang-Mills指标
A Wess--Zumino--Witten type equation in the space of Kähler potentials in terms of Hermitian--Yang--Mills metrics
论文作者
论文摘要
我们证明,从$ \ mathbb {c}^m $ in $ d $ in $ d $ in tokähler势可以通过某些向量套件上的Hermitian-yang-Mills指标统一近似于Kähler电位的解决方案。关键是关于直接图像捆绑包的阳性的伯恩兹森定理的新版本。
We prove that the solution of a Wess-Zumino-Witten type equation from a domain $D$ in $\mathbb{C}^m$ to the space of Kähler potentials can be approximated uniformly by Hermitian-Yang-Mills metrics on certain vector bundles. The key is a new version of Berndtsson's theorem on the positivity of direct image bundles.