论文标题
分层对话框自动编码器用于对话框状态跟踪数据增强
Variational Hierarchical Dialog Autoencoder for Dialog State Tracking Data Augmentation
论文作者
论文摘要
最近的作品表明,生成数据增强,其中合成样品从深生成模型中生成的合成样品补充了训练数据集,从而使NLP任务受益。在这项工作中,我们将这种方法扩展到对话框跟踪的任务,以实现目标对话。由于关于话语和相关注释的面向目标对话的固有层次结构,因此深层生成模型必须能够捕获不同层次结构和对话框特征的类型之间的连贯性。我们提出了各种分层对话框自动编码器(VHDA),用于建模面向目标的对话的完整方面,包括语言特征和基本结构化注释,即扬声器信息,对话框ACT和目标。所提出的体系结构旨在使用相互连接的潜在变量对面向目标对话的各个方面进行建模,并学会从潜在的空间中生成相干目标对话框。为了克服培训复杂的变分模型引起的培训问题,我们提出了适当的培训策略。各种对话框数据集的实验表明,我们的模型通过生成数据增强改善了下游对话框跟踪器的鲁棒性。我们还发现了我们统一的方法来建模目标对话框的其他好处:对话框响应生成和用户仿真,我们的模型优于以前的强大基线。
Recent works have shown that generative data augmentation, where synthetic samples generated from deep generative models complement the training dataset, benefit NLP tasks. In this work, we extend this approach to the task of dialog state tracking for goal-oriented dialogs. Due to the inherent hierarchical structure of goal-oriented dialogs over utterances and related annotations, the deep generative model must be capable of capturing the coherence among different hierarchies and types of dialog features. We propose the Variational Hierarchical Dialog Autoencoder (VHDA) for modeling the complete aspects of goal-oriented dialogs, including linguistic features and underlying structured annotations, namely speaker information, dialog acts, and goals. The proposed architecture is designed to model each aspect of goal-oriented dialogs using inter-connected latent variables and learns to generate coherent goal-oriented dialogs from the latent spaces. To overcome training issues that arise from training complex variational models, we propose appropriate training strategies. Experiments on various dialog datasets show that our model improves the downstream dialog trackers' robustness via generative data augmentation. We also discover additional benefits of our unified approach to modeling goal-oriented dialogs: dialog response generation and user simulation, where our model outperforms previous strong baselines.