论文标题
使用中微子事件发生率在超新星爆炸中测试MSW效应
Testing MSW effect in supernova explosion with neutrino event rates
论文作者
论文摘要
超新星(SN)中微子在传播过程中的风味过渡机制值得仔细审查。我们提出了一种验证Mikheyev-Smirnov-Wolfenstein(MSW)效应期间Sn中微子从SN核向地球传播时的方法。与MSW区别的非MSW场景是真空中中微子传播的不一致的风味过渡概率以及由快速风味转化引起的风味均衡。我们的方法涉及研究中微子事件发生率在液体氩,液体闪烁和水切伦科夫探测器中的时间演变。液体氩检测器对$ν_e$通量敏感,而液体闪烁和水切伦科夫检测器可以通过反向$β$衰减过程测量$ \barν_e$ flux。 $ν_e$($ \barν_e$)的通量是$ν_e$($ \ \barν_e$)和$ν_{μ,τ} $($ \barν_{μ,τ} $)的线性组合。使用当前可用的SN中微子排放的模拟,$ν_e{\ rm ar} $和$ \barν_e$ theme $β$β$衰减事件速率和相应的累积事件分数的时间演变最多可计算出$ t = 100〜 {\ rm MS} $ in Dune,Juno,Juno,Juno和Hyper-kamiokokiokokiokiokokiokokiokikande。结果表明,每个检测器中的累积时间分布曲线下的区域从$ t = 0 $到$ t = 100〜 {\ rm MS} $及其比率可用于区分SN中微子的不同风味过渡方案。
Flavor transition mechanisms of supernova (SN) neutrinos during their propagation deserve a close scrutiny. We present a method to verify Mikheyev-Smirnov-Wolfenstein (MSW) effect during the propagation of SN neutrinos from the SN core to the Earth. The non-MSW scenarios to be distinguished from the MSW one are the incoherent flavor transition probability for neutrino propagation in the vacuum and the flavor equalization induced by fast flavor conversions. Our approach involves studying the time evolution of neutrino event rates in liquid argon, liquid scintillation, and water Cherenkov detectors. The liquid argon detector is sensitive to $ν_e$ flux while liquid scintillation and water Cherenkov detectors can measure $\barν_e$ flux through inverse $β$ decay process. The flux of $ν_e$ ($\barν_e$) is a linear combination of $ν_e$ ($\barν_e$) and $ν_{μ,τ}$ ($\barν_{μ,τ}$) fluxes from the source with the weighting of each component dictated by the flavor transition mechanism. Using currently available simulations for SN neutrino emissions, the time evolution of $ν_e{\rm Ar}$ and $\barν_e$ inverse $β$ decay event rates and the corresponding cumulative event fractions are calculated up to $t=100~{\rm ms}$ in DUNE, JUNO, and Hyper-Kamiokande detectors, respectively. It is shown that the area under the cumulative time distribution curve from $t=0$ to $t=100~{\rm ms}$ in each detector and their ratio can be used to discriminate different flavor transition scenarios of SN neutrinos.