论文标题

使用分数变化原理获得金属中电子的凹陷方程

Obtaining the Drude Equation for Electrons in Metals Using a Fractional Variational Principle

论文作者

Mora, Luis Fernando Mora

论文摘要

为了与包含1/2阶的分数衍生物的拉格朗日人一起使用,得出了分数变分原理。通过迫使与这种类型的拉格朗日相关的动作是固定的,可以获得修改的分数Euler-Lagrange方程。事实证明,这可以重现两个基本的一维能量触及系统的运动方程:弹簧质量系统受摩擦阻尼和串联连接的RLC电路。最后,通过使用分数Euler-lagrange方程,当在电子相关能量中考虑分数动能时,回收了金属中电子的磨损关系。

A fractional variational principle was derived in order to be used with lagrangians containing fractional derivatives of order 1/2. By forcing the action associated to this type of lagrangian to be stationary, a modified fractional Euler-Lagrange equation was obtained. This was shown to reproduce the equations of motion of two basic 1-dimensional energy-dissipative systems: a spring-mass system damped by friction, and a RLC circuit connected in series. Finally, by using the fractional Euler-Lagrange equation, the Drude relationship for electrons in metals was recovered when a fractional kinetic energy was taken into consideration in the electron's associated energies.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源