论文标题
$(3,γ)$的重量界限
Weight bounds for $(3,γ)$-hyperelliptic curves
论文作者
论文摘要
Fernando Torres引入了{\ IT $(n,γ)$ - 高elliptic} Semigroups,以封装WeierStrass Semigroup的最显着特性,该特性与$ N $ fold curves curvers $γ$的$ n $ fold curves的完全污染点相关。托雷斯(Torres)表征了$(2,γ)$ - 最大体重的高ellip骨半群,每当其属相对于$γ$的属均大。在这里,我们对$(3,γ)$ - 椭圆形的半群也这样做,并且每当$ n \ geq 3 $都是PRIME时,我们就会对一般情况进行猜想。
{\it $(N,γ)$-hyperelliptic} semigroups were introduced by Fernando Torres to encapsulate the most salient properties of Weierstrass semigroups associated to totally-ramified points of $N$-fold covers of curves of genus $γ$. Torres characterized $(2,γ)$-hyperelliptic semigroups of maximal weight whenever their genus is large relative to $γ$. Here we do the same for $(3,γ)$-hyperelliptic semigroups, and we formulate a conjecture about the general case whenever $N \geq 3$ is prime.